-
شماره ركورد
21228
-
شماره راهنما(اين فيلد مربوط به كارشناس ميباشد لطفا آن را خالي بگذاريد)
۲۱۲۲۸
-
پديد آورنده
سعيده باقرزاده وشكي
-
عنوان
كاربرد نظريه نقطه ثابت در نظريه بازي و هم ارزي هاي آنها
-
مقطع تحصيلي
كارشناسي ارشد
-
رشته تحصيلي
رياضي محض - آناليز
-
سال تحصيل
۱۳۹۵-۱۳۹۸
-
تاريخ دفاع
۱۳۹۸/۴/۳
-
استاد راهنما
دكتر رضا سعادتي
-
استاد مشاور
دكتر جواد وحيدي
-
دانشكده
رياضي
-
چكيده
ﻧﻈﺮﯾﻪ يﺑﺎزيﭘﯿﺶﺑﯿﻨﯽﻣﯽ ﮐﻨﺪﮐﻪﭼﮕﻮﻧﻪاﻓﺮادﻋﻘﻼﯾﯽﺗﺤﺖﻣﻮﻗﻌﯿﺖ ﻫﺎﯾﯽﮐﻪﺑﻪﻫﻢ واﺑﺴﺘﻪﻫﺴﺘﻨﺪ،رﻓﺘﺎرﻣﯽ ﮐﻨﻨﺪ.ﻫﻤﭽﻨﯿﻦاﺑﺰاررﯾﺎﺿﯽﻗﺪرﺗﻤﻨﺪي،ﺑﺮايﭘﯿﺶﺑﯿﻨﯽﺧﺮوﺟﯽ ﻫﺎي ﯾﮏﺑﺎزي،وﻗﺘﯽﺑﻬﺮه ﻣﻨﺪياﻓﺮادﻣﺘﻀﺎدﻣﯽ ﺑﺎﺷﺪرااراﺋﻪﻣﯽ ﮐﻨﺪ. ﮐﻪاﻏﻠﺐدرﻣﻮﻗﻌﯿﺖ ﻫﺎي اﻗﺘﺼﺎديرخﻣﯽ دﻫﺪ. ﺟﺎنﻧﺶﻧﻈﺮﯾﻪ يﺗﻌﺎدلراﺑﻪﺑﺎزي ﻫﺎﯾﯽﺑﺎﺗﻌﺪادﻣﺘﻨﺎﻫﯽﺑﺎزﯾﮑﻦﺗﻌﻤﯿﻢدادوﻫﻤﭽﻨﯿﻦ اﺛﺒﺎﺗﯽﺑﺮايوﺟﻮدﺗﻌﺎدلﻧﺶدراﺳﺘﺮاﺗﮋي ﻫﺎيﺗﺮﮐﯿﺒﯽﺑﺮايﺑﺎزي ﻫﺎيﻣﺘﻨﺎﻫﯽوﺑﻪﻓﺮم اﺳﺘﺮاﺗﮋﯾﮏاراﺋﻪﮐﺮد. وﺟﻮد ﺗﻌﺎدل در ﺑﺎزي ﻫﺎ ﺑﺎ ﻗﻀﺎﯾﺎي ﻧﻘﻄﻪ ي ﺛﺎﺑﺖ ﻣﺎﻧﻨﺪ ﻗﻀﯿﻪ ي ﻧﻘﻄﻪ ي ﺛﺎﺑﺖ ﺑﺮآور و ﮐﺎﮐﻮﺗﺎﻧﯽارﺗﺒﺎطﺑﺴﯿﺎرﻧﺰدﯾﮑﯽدارد. ﻗﻀﯿﻪ يﻣﯿﻨﯿﻤﺎﮐﺲﯾﮑﯽازﻧﺘﺎﯾﺞﻣﻬﻢدرﻧﻈﺮﯾﻪ يﺑﺎزياﺳﺖ. اﯾﻦﻗﻀﯿﻪوﺟﻮدﯾﮏ اﺳﺘﺮاﺗﮋيراﮐﻪﺑﯿﺸﺘﺮﯾﻦﻣﻘﺪارزﯾﺎنراﮐﻤﯿﻨﻪوﮐﻤﺘﺮﯾﻦﻣﻘﺪارﺳﻮدراﺑﯿﺸﯿﻨﻪﻣﯽ ﮐﻨﺪ،ﻧﺸﺎن ﻣﯽ دﻫﺪوﻫﻤﭽﻨﯿﻦﺑﺎاﺳﺘﻔﺎدهازﻧﺘﺎﯾﺞﻗﻀﯿﻪ يﻣﯿﻨﯿﻤﺎﮐﺲ،ﻣﺤﺎﺳﺒﻪ يﺑﻬﺘﺮﯾﻦاﺳﺘﺮاﺗﮋيﮐﻪ ﻫﺮﺑﺎزﯾﮑﻦاﺗﺨﺎذﻣﯽ ﮐﻨﺪ،اﻣﮑﺎنﭘﺬﯾﺮاﺳﺖ. ﻫﻤﭽﻨﯿﻦﻧﺸﺎنﻣﯽ دﻫﯿﻢﮐﻪﻗﻀﯿﻪ يﻧﻘﻄﻪ يﺛﺎﺑﺖﺑﺮآوروﮐﺎﮐﻮﺗﺎﻧﯽﺑﺎاﺳﺘﻔﺎده يﻣﺴﺘﻘﯿﻢ ازﺗﻌﺎدلﻧﺶﺑﻪدﺳﺖﻣﯽ آﯾﺪ. ﮐﻠﻤﺎتﮐﻠﯿﺪي:ﺗﻌﺎدلﻧﺶ؛ﻗﻀﯿﻪ يﻧﻘﻄﻪﺛﺎﺑﺖﺑﺮآور؛ﻗﻀﯿﻪ يﻧﻘﻄﻪﺛﺎﺑﺖﮐﺎﮐﻮﺗﺎﻧﯽ؛ﻗﻀﯿﻪ ي ﻣﯿﻨﯿﻤﺎﮐﺲ
-
تاريخ ورود اطلاعات
1398/08/06
-
عنوان به انگليسي
ََََApplication of fixed point theory in game theory with equivalence results
-
تاريخ بهره برداري
10/28/2019 12:00:00 AM
-
دانشجوي وارد كننده اطلاعات
سعيده باقرزاده وشكي
-
چكيده به لاتين
Game theory predicts how rational individuals would behave under interdepen
dence. It provides a great mathematical tool to infer outcomes when people have
conflicts of interests, which often happens in economics situations.
John Nash generalized the notion of an equilibrium to games with finite number of
players and also established the existence of at least one mixed strategy, Nash equilib
rium for every finite strategic form games.
The existence of equilibria in games is closely coupled with fixed point theorems
such as the Brouwer fixed point theorem and Kakutani’s fixed point theorem.
The minimax theorem is one of the most important results in game theory.
The theorem shows that there exists a strategy that both minimizes the maximum
loss and maximizes the minimum gain. Moreover, by working backwards from the
outcomeoftheminimaxtheorem,itispossibletocalculatethebeststrategytheplayers
could take.
WealsoshowthattheKakutaniandBrouwerfixedpointtheoremscanbeobtained
by directly using the Nash equilibrium theorem.
Keywords: Nash equilibrium; Brouwer fixed point theorem; Kakutani fixed point
theorem; minimax theorem.
-
لينک به اين مدرک :