-
شماره ركورد
14767
-
عنوان
مروري بر فايروال هاي تعريف شده توسط نرم افزار براي شبكه هاي كامپيوتري
-
سال تحصيل
1402
-
استاد راهنما
دكتر وصال حكمي
-
چکيده
In todayʹs network infrastructures, Software-Defined Firewalls (SDFs) combined with adaptive, machine learning (ML)-driven rule management need to be employed in order to meet the scalability needs, real-time attack reaction, and dynamic policy deployment needs. Conventional firewalls statically configured cannot be positioned to handle the dynamic changes in network topologies as well as emerging cyber attacks. This seminar report proposes a machine learning-enhanced system model of SDFs that enables real-time traffic classification, anomaly detection, and rule updation. The system utilizes supervised and unsupervised learning-based algorithms to dynamically update to threats and optimize rule sets to minimize false positives and performance bottlenecks. The methodology involves developing and evaluating a prototype in a Software-Defined Networking (SDN) setup with the assistance of tools such as Mininet and NS-3,. The most important criteria for assessment are detection accuracy, scalability, and adaptability. It aids in further developing intelligent firewall technologies and gives a robust, proactive security solution for the security of cloud-native and high-speed digital networks.
-
نام دانشجو
وئام القصاب
-
تاريخ ارائه
6/9/2025 12:00:00 AM
-
متن كامل
86823
-
پديد آورنده
وئام القصاب
-
تاريخ ورود اطلاعات
1404/03/21
-
عنوان به انگليسي
An Overview of Software-Defined Firewalls for Computer Networks
-
كليدواژه هاي فارسي
فايروالهاي نرمافزارمحور (SDF) , مديريت قوانين مبتني بر يادگيري ماشين , امنيت تطبيقي شبكه، , طبقهبندي ترافيك و تشخيص ناهنجاري , شبكه نرمافزارمحور (SDN)
-
كليدواژه هاي لاتين
Software-Defined Firewalls (SDFs) , Machine Learning-Based Rule Management , Adaptive Network Security , Traffic Classification and Anomaly Detection , Software-Defined Networking (SDN)
-
لينک به اين مدرک :