-
شماره ركورد
14812
-
عنوان
يك مدل كارآمد براي طبقهبندي ترافيك مبتني بر خوشهبندي به منظور شناسايي حملات DDoS در شبكههاي SDN با استفاده از الگوريتم K-Means و كاهش ابعاد اطرح سؤالك على ChatGPT
-
سال تحصيل
1402
-
استاد راهنما
دكتر جواد وحيدي
-
چکيده
Abstract
This research proposes an efficient, lightweight clustering-based traffic classification model for the detection of Distributed Denial of Service (DDoS) attacks in Software-Defined Networking (SDN) environments. The model synergistically integrates K-Means clustering with dimensionality reduction techniques such as Principal Component Analysis (PCA) to improve detection accuracy and computational efficiency. By addressing the limitations of signature-based detection and the scalability issues in current machine learning approaches, this study demonstrates that unsupervised clustering can effectively identify abnormal traffic behaviors indicative of DDoS attacks, including zero-day threats. Dimensionality reduction reduces the feature space complexity, mitigates the curse of dimensionality, and enhances clustering performance, making this model suitable for real-time SDN applications. evaluation metrics such as accuracy, detection rate, false positive rate, and clustering validity measures confirm the model’s effectiveness. This research contributes to the development of scalable and adaptable solutions for enhancing the security of next-generation programmable networks.
-
نام دانشجو
مهند البوراضي
-
تاريخ ارائه
6/10/2025 12:00:00 AM
-
متن كامل
86894
-
پديد آورنده
مهند البوراضي
-
تاريخ ورود اطلاعات
1404/04/23
-
عنوان به انگليسي
(An Efficient Clustering-Based Traffic Classification Model for DDoS Attack Detection in SDN Using K- Means and Dimensionality Reduction)
-
كليدواژه هاي لاتين
Software-Defined Networking (SDN) , Distributed Denial of Service (DDoS) , K-Means Clustering, Dimensionality Reduction , Principal Component Analysis (PCA) , Traffic Classification , Anomaly Detection , Network Security , Machine Learning , Zero-Day Attack Detection
-
لينک به اين مدرک :