چكيده به لاتين
In the twenty-first century especially in the recent decade, due to concerns about the environment and social responsibility, the Closed-loop supply chain has attracted more attention. In addition, the recycling and remanufacturing of used products, both in the research environment and in the industrial environment due to various factors such as environmental concerns, resource scarcity, government regulations, have been investigated. In this dissertation, a closed loop supply chain consisting of a manufacturer, a retailer, and a third-party collector is considered. The manufacturer also produces new products from raw materials and simultaneously remanufacturing the used products. In the direct channel, the manufacturer introduces new products and remanufactured products to the market through a retailer, and in the reverse channel, the retailer and third-party collector competitively collect the products used. To analyze the optimal pricing and collecting decisions under different channel leadership, four different scenarios based on game theory have been developed - a centralized model and three decentralized models based on the Stackelberg game including Manufacturer Stackelberg, Retailer Stackelberg, and Third-Party collector Stackelberg. Then, using numerical analysis, we compared and analyzed the optimal decisions in different scenarios and examined the effect of competition intensity between the dual recycling channel of the retailer and third-party collector on decision variables, profit of members and total profit. We concluded that the profit of chain Supply in the centralized scenario is larger than decentralized models. In addition, based on the results obtained, from the perspective of the remanufacturing process and the welfare of consumers, it can be concluded that the retailer-led decentralized model is often the most effective scenario in the CLSC. From the perspective of Total supply chain profit among the decentralized models, the retailer leadership scenario is the best and closest model to the centralized model. Finally, considering the basic market size and the sensitivity of demand to retail price, a comprehensive sensitivity analysis is presented for decision variables and profit functions.