-
شماره ركورد
23017
-
پديد آورنده
محسن دده زاده
-
عنوان
برخي روش هاي تحليلي وحود جواب در معادله پي لاپلاسين
-
مقطع تحصيلي
كارشناسي ارشد
-
رشته تحصيلي
رياضي محض
-
سال تحصيل
1399
-
تاريخ دفاع
1399/8/27
-
استاد راهنما
دكتر سميه سعيدي نژاد
-
استاد مشاور
دكتر محمد باقر قائمي
-
دانشكده
رياضي
-
چكيده
در اين پايان نامه به بررسي معادله
8><
>:
△p u = f(x; u) x 2 Ω
u j@Ω= 0:
تحتشرايط ديريكله پرداخته ايم .كه در آن
△pu =
Σn
i=1
@
@xi
(j ▽u jp2 @u
@xi
)
يك تابع كاراتئودوري است . با در نظر گرفتن عملگر f : Ω R ! R 1 و < p < 1 و
1
p
+ 1
p′ = كه 1 W1;p′
(Ω) به دوگان آن يعني W01;p(Ω) به عنوان يك نگاشت دوگان از △p
، ابتدا با استفاده از تكنيك نقطه ثابت لري-شادر وجود f وخواص عملگر نميتسكي نظير
جواب مسئله مورد بررسي قرار گرفته و همچنين با استفاده از روش هاي تغييراتي مسير
كوهي به اثبات وجود جواب براي مسئله پرداخته ايم
-
تاريخ ورود اطلاعات
1399/10/23
-
عنوان به انگليسي
Some methods on the existence of solution for p-laplasian equation
-
تاريخ بهره برداري
11/18/2021 12:00:00 AM
-
دانشجوي وارد كننده اطلاعات
محسن دده زاده
-
چكيده به لاتين
In this thesis we discuss on the
8><
>:
△p u = f(x; u) in Ω
u j@Ω= 0:
under the Dirichlet boundary condition , where
△pu =
Σn
i=1
@
@xi
(j ▽u jp2 @u
@xi
)
,1 < p < 1andf : Ω R ! R is a caratheodory function . by considering the operator
△p a duality mapping betweenW1;p
0 (Ω) and its dual , i.e ,W1:p′
(Ω) ,where 1
p
+
1
p′ = 1
and the proporties of the coresponding Nemytskii operator of f ,first we show the existence
of weak solusion applying the Leray-Schauder fixed point further by variational technique
especially mountain pass methods the existence of multiple solution is proved.
-
كليدواژه هاي فارسي
فضاي سوبولوف , پي لاپلاسين , جواب ضعيف , مسئله ديريكله
-
كليدواژه هاي لاتين
Sobolev space , p-laplasian , Weak solution , Dirichlet problem
-
لينک به اين مدرک :