-
شماره ركورد
33218
-
پديد آورنده
نرگس گرجي
-
عنوان
منظم سازي به روش شبه معين
-
مقطع تحصيلي
كارشناسي ارشد
-
رشته تحصيلي
رياضي
-
سال تحصيل
1393
-
تاريخ دفاع
1393/08/10
-
استاد راهنما
دكتر بتول جذبي
-
استاد مشاور
ندارم
-
دانشكده
رياضي
-
چكيده
ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﺷﺒﻪ ﻣﻌﯿﻦ ﮔﺮوه ﻣﻬﻤﯽ از ﺑﺮﻧﺎﻣﻪ رﯾﺰي ﻣﺨﺮوﻃﯽ اﺳﺖ ﮐﻪ ﯾﮏ اﺑﺰار ﻣﻬﻢ در ﻣﺪﻟﺴﺎزي اﺳﺖ و ﮐﺎرﺑﺮدﻫﺎي زﯾﺎدي دارد ﻋﻼوه ﺑﺮ ﻗﺪرت ﻣﺪﻟﺴﺎزي ﻗﺎﺑﻠﯿﺖ ﻣﻬﻢ آن در در ﺣﻞ ﺗﺌﻮرﯾﮏ و ﻋﻤﻠﯽ ﯾﮑﯽ دﯾﮕﺮ از ﻋﻠﻞ ﮐﺎرﺑﺮد وﺳﯿﻊ اﯾﻦ روش ﻣﺪﻟﺴﺎزي اﺳﺖ .در ﺣﺎل ﺣﺎﺿﺮ ﻣﺤﺒﻮﺑﺘﺮﯾﻦ اﻟﮕﻮرﯾﺘﻢ ﺣﻞ در ﻣﺪل SDP روش ﻫﺎي ﻧﻘﻄﻪ
دروﻧﯽ اﺳﺖ 101].،65،[3ﻧﺮم اﻓﺰارﻫﺎﯾﯽ ﻣﺜﻞ 3 [92]SDPT، [10]DSDP، 16]CSDP،[15،[85]SeDeMi وﺧﺎﻧﻮاده SDPAﻫﺎ ﻣﺜﻞ 100]،43،[42 MOSEKاز اوﻟﯿﻦ ﻧﺮم اﻓﺰارﻫﺎي ﺗﺠﺎري ﺣﻞ ﮐﻨﻨﺪه SDP ﻫﺴﺘﻨﺪ.در اﮐﺜﺮﯾﺖ روش ﻫﺎي ﻧﻘﻄﻪ دروﻧﯽ ﻧﺘﺎﯾﺞ ﺣﺎﺻﻞ از ﻫﻤﮕﺮاﯾﯽ ﺗﺌﻮرﯾﮏ ﺑﺮ اﺳﺎس اﯾﻦ ﻓﺮﺿﯿﻪ ﻫﺴﺘﻨﺪ ﮐﻪ SDP و دوﮔﺎﻧﺶ در ﺷﺮاﯾﻂ اﮐﯿﺪا ﺷﺪﻧﯽ )ﯾﺎ ﺷﺮاﯾﻂ اﺳﻼﺗﺮ( ﺻﺪق ﻣﯿﮑﻨﻨﺪ و اﯾﻦ ﻣﻄﻠﺐ اﺳﺖ ﮐﻪ ﺧﻮش ﺗﻌﺮﯾﻔﯽ ﻣﺴﯿﺮ ﻣﺮﮐﺰي را ﺗﺴﻬﯿﻞ ﻣﯽ ﻧﻤﺎﯾﺪ.اﻟﺒﺘﻪ از ﻃﺮف دﯾﮕﺮ ﺗﻌﺪادﮐﻤﯽ ازاﻟﮕﻮرﯾﺘﻢ ﻫﺎي دﯾﮕﺮ ﻫﻢ ﻣﻮﺟﻮد اﺳﺖ ﮐﻪ ﻫﻤﮕﺮاﯾﯽ ﺗﺤﻠﯿﻠﯽ آﻧﻬﺎ ﺑﺪون ﺑﺮﻗﺮار ﺑﻮدن ﺷﺮط ﺷﺪﻧﯽ اﮐﯿﺪ ﺗﺎﻣﯿﻦ ﻣﯿﺸﻮد[39]در ﻋﻤﻞ ﺿﺮورﺗﯽ ﻧﺪارد ﮐﻪ ﺣﺘﻤﺎ ﯾﮏ sdp اﮐﯿﺪا ﺷﺪﻧﯽ ﺑﺎﺷﺪ و در ﻣﻮاﻗﻌﯽ ﮐﻪ ﻣﺴﺌﻠﻪ ﻣﺎ در ﺷﺮط اﮐﯿﺪا ﺷﺪﻧﯽ ﺻﺪق ﻧﻤﯽ ﮐﻨﺪ ﯾﮏ راه ﻓﺮﻣﻮل ﺑﻨﺪي دوﺑﺎره ﻣﺴﺌﻠﻪ و رﺳﯿﺪن ﺑﻪ ﯾﮏ ﻣﺪل ﺟﺪﯾﺪ اﺳﺖ ﮐﻪ ﺧﻮدش و دوﮔﺎﻧﺶ اﮐﯿﺪا ﺷﺪﻧﯽ ﻫﺴﺘﻨﺪ.ﺳﭙﺲ ﺑﺎ اﺳﺘﻔﺎده از اﻟﮕﻮرﯾﺘﻢ ﻫﺎي ﻧﻘﻄﻪ دروﻧﯽ ﺑﻪ ﺣﻞ ﻣﺪل ﺟﺪﯾﺪ ﺣﺎﺻﻠﻪ ﻣﯽ ﭘﺮدازﯾﻢ.
-
تاريخ ورود اطلاعات
1404/01/20
-
عنوان به انگليسي
regularization in semidefinite programming
-
تاريخ بهره برداري
1/1/1900 12:00:00 AM
-
دانشجوي وارد كننده اطلاعات
نرگس گرجي
-
چكيده به لاتين
In this thesis the cubic semiorthogonal compactly supported B-spline wavelets with their boundary wavelets as a basis functions are used to solve the non- linear Fredholm–Hammerstein integral equations. In chapter 1,some required definitions and theorems are presented. In chapter 2, a brief history and definition of integral equations are expressed. In chapter 3,wavelet theory and MRA analysis are described completley.scince cubic B-spline are semi orthogonal so we need B-orthogonal MRA which is introduced in this chap- ter. In chapter 4 cubic B-spline wavelets with their properties and bound- ary wavelets are described. In chapter 5,the semi orthogonal cubic B-Spline wavelets with their dual wavelets are developed to approximate the solution of nonlinear Fredholm-Hammerstein integral equations.actually we reduce the integral equations to algebraic system which can be solved easily.at the end of this chapter some numerical examples are illustrated.
-
كليدواژه هاي فارسي
مسئله افراز گراف , قضيه پايولار
-
كليدواژه هاي لاتين
graph partitioninig
-
Author
narges gorji
-
SuperVisor
dr batool jazbi
-
لينک به اين مدرک :